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ABSTRACT: Realistic fracture simulations in rock as a heterogeneous brittle material with significant inherent random-
ness, require the use of models that incorporate its inhomogeneities and statistical variability. Since brittle materials do
not match ductile materials in dissipating energy in the bulk, their fracture response is highly dependent on the stochastic
microscale distribution and strength of defects. The high dependence of their fracture progress on microstructural defects
results in wide scatter in their ultimate strength and the so-called size effect. Our approach for incorporating random-
ness in rocks is based on the modeling of stochastic volume elements (SVEs). Although representative volume elements
(RVEs) are more commonly used in solid mechanics, SVEs are more appropriate for fracture analysis since they ensure
that the material randomness is maintained. They still average microscale features similar to RVEs, and provide a more
economical solution approach than those methods that explicitly model all microcracks in rock. To create a random field
for macroscopic fracture strength field, we first generate several realizations of rock with a prescribed crack density and
distribution. SVEs are then constructed with their centers at known spatial position on these random realizations. Next,
by using a moving window approach, where the SVE traverses the known positions in these random realizations, we obtain
first and second moments of the target random field. Point-wise probability distribution function and spatial covariance
function are derived and used to generate consistent realizations of random fields based on the Karhunen-Loève (KL)
method. Finally, such realizations will be used for the analysis of dynamic stimulation of a wellbore in a tight formation.
A powerful and mesh adaptive spacetime discontinuous Galerkin finite element method is used for dynamic fracture sim-
ulations.
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1 INTRODUCTION

Rocks, having highly random solid aggregates structure,
are inhomogeneous at various scales. At microscale, het-
erogeneity is due to the presence of microcracks, gran-
ular microstructures which can include a large number
of randomly oriented zones of potential failure in the
form of grain boundaries. At macroscale, inherent ho-
mogeneity is the results of the matrix containing differ-
ent rock types, and weak features such as faults and
fracture networks. Rock inhomogeneities are crucial as
they affect the continuum level mechanical characteris-
tics such as strength, toughness, and elasticity properties
of the material. These heterogeneities imposed by the
rocks microstructure greatly influence the material peek
and post-instability responses [1]. This is most evident
in (quasi)brittle materials as they lack energy dissipative
mechanisms to re-balance stresses induced by microscale
stress concentrations. Another key aspect of brittle frac-
ture, related to its dependence on material microstructure,
is that for the same geometry and loading condition vari-
ous crack patterns, ultimate loads, and absorbed energies

can be experienced [2–5]. These observations emphasize
the importance of including randomness in material prop-
erties of rock in its fracture analysis.

Rock fracturing studies can explicitly or implicitly in-
corporate heterogeneities and/or discontinuous features
within material models or computational approaches.
Models derived from explicit approaches directly consol-
idate defects, microcracks, and other inhomogeneities into
the scheme. Studies such as lattice models contain features
making them favorable candidates to explicitly model ma-
terial inhomogeneities. In that respect, a lattice of ele-
ments representative of a particle network are connected
with springs [6] and heterogeneity is accounted for by vary-
ing strength and size of lattice particles [7]. However, the
applications of explicit schemes are at times limited to
small space and time scales because of the need to directly
resolve existing microstructures.

An example of an implicit model is the probabilistic
Weibull model. [8,9]. The Weibull model provides physical
insight by accurately modeling size-effect (i.e., the decrease
of failure strength as a specimen size increases) in brittle
materials. Continuum fracture models calibrated based on
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a material’s microstructure, such as the damage models
of [10–13], are other examples of implicit approaches.

Furthermore, it is possible to derive macroscopic ef-
fective constitutive quantities with a homogenization ap-
proach wherein the elemental problem is solved in a Vol-
ume Element (VE). There are two commonly used classes
of VEs known as Representative Volume Element (RVE)
(which also is referred to as Representative Elementary
Volume (REV) in rock mechanics), and its counterpart
Stochastic Volume Elements (SVEs), cf. e.g., [14–17]. A
compilation of RVE definitions can be found in [18] but
generally states that for an RVE to be valid it must: 1)
be sufficiently smaller than the macroscale structure and
sufficiently larger than microscale, 2) must contain a large
number of micro-heterogeneities for the statistical homo-
geneous and ergodic properties to ensure proper represen-
tation of the macro response, and 3) have a response which
is independent of the boundary condition type. When the
size of a VE decreases, or the average microscopic fea-
ture size increases, the VE approaches the SVE regime
which [19] deems as a more accurate averaging scheme than
RVEs. The advantages of SVEs are that they can preserve
material spatial heterogeneities and model stochastic frac-
ture response from one sample to another one with exactly
the same geometry and loading. The random fields that
can be realized from SVEs by means of methods such as
Karhunen-Loève (KL) expansion, used in works [20, 21],
can be very effective and efficient for fracture analysis of
brittle and quasi brittle materials as they preserve mi-
crostructure variability, but average it to a larger and more
manageable length scale.

The authors have successfully used the Weibull model
in the context of a spacetime discontinuous Galerkin finite
element method [22] and demonstrated that having spatial
inhomogeneity in fracture strength, through using a ran-
dom crack nucleation model, can greatly improve predicted
dynamic fracture patterns. In the present work, we want
to derive the statistics of fracture strength field at the con-
tinuum macroscale based on the statistics of cracks in rock
at microscale. Finally, a tight reservoir with a generated
stochastic fracture random field is simulated in section 3.

2 FORMULATION

In this section the formulation is outlined for a scheme
which allows the derivation of an analytical representa-
tion of correlated physics fields based on a material’s mi-
crostructure, specifically for this work microcrack distri-
bution in rocks. Section one presents a more formal def-
inition of an SVE and how it is characterized. Section
two presents the concept of the (non)Gaussian Karhunen-
Loève expansion, the probability assumptions that accom-
pany its derivation, and brief description on how it is solved
numerically with finite element methods. Section three
discusses the spatial sampling algorithm and spatial grid
structure used to determine Cumulative Distribution Func-
tion (CDF) of a non-Gaussian random field and covariance
of a Gaussian random field needed for implementation into
the KL expansion. Section four introduces the equations

used to determine fracture strength which are extrapolated
by employing the spatial sampling method. Finally, section
five presents a dynamic stimulation of a wellbore where
rock fracture strength is realized by the aforementioned
stochastic approach.

2.1 Random Microstructure Characteri-
zation

Practically, it is not possible to fully determine the real mi-
crostructure of rock at every point in a large region such
as a reservoir. These properties are supposed to be sub-
sequently used for mechanical and fracture analysis. In
lieu of using a deterministic approach where properties are
provided at every point, the characterization of rock mi-
crostructure and obtaining of effective material properties
are handled by statistical averaging in a continuum me-
chanics viewpoint, specifically by using Stochastic Volume
Elements (SVE). To elaborate on the concept of SVEs, let
us define the macroscale domain length LM , microscale
heterogeneity average length lm and the SVE characteris-
tic size LV E seen in figure 1.

Figure 1: Macro- to Micro-scale length scales relevant
to SVE homogenization.

The size of the SVE is affected by the characteristic
length scale of the domain and the average length of mi-
croscale fractures. Assuming that the SVE is much smaller
than the domain of interest (LV E � LM ), the relative size
of SVE to the contained microstructures is characterized
through the ratio β = LV E/lm. As β → ∞ the SVE ap-
proaches the RVE limit and randomness is lost given RVEs
homogenize material properties and yield constant values
from point to point for a macroscopically homogeneous
material. A more detailed discussion on the relative sizes
of an SVE to the domain and characteristic microstructure
sizes is given in [19]; as discussed therein, in many cases of
homogenization it is assumed that the RVE limit is reached
(without verifying this condition in many cases). Roughly
speaking and in practice, for RVEs β is often greater than
10 to 100, with higher values required when microstruc-
tural features are more complex, distinct from the bulk, or
at higher densities. As discussed in the introduction, we
specifically prefer to use SVEs to maintain spatial variabil-
ity within one realization and sample to sample variations
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across realizations. For SVEs, the size LV E is chosen be-
low the RVE limit to preserve randomness while observing
the caveats that: 1) LV E is larger than the microstructure
length scale lm and much smaller than the macroscopic
length scale LM , and 2) the SVE must contain a sufficient
number of micro-heterogeneities to provide a comprehen-
sive representation of the domain.

2.2 Karhunen-Loève (KL) Expansion

For a given domain D̄ at an arbitrary location x a spatially-
dependent correlated random field value η(x) is to be de-
termined. The value of this random field is derived based
on a random variable ω which is of a probability struc-
ture known a priori (i.e., η = η(x, ω)). In practice, it
is not common to have an analytical representation of
the random field or impossible to know its value at ev-
ery discrete point within the domain but rather it is more
likely that the values of the random field’s expected value
E(η(x)) = µη(x) and covariance COVη(x1,x2) are known
at a finite number of locations within the domain. Having
these quantities (at all points), it is possible to derive a
simple formula which approximates the mean and covari-
ance of the known random variable distribution; a common
method for producing such a formula is the Karhunen-
Loève (KL) expansion of the random field η = η(x, ω).
The truncated KL expansion of the random field yields
the following representation of the field,

η(x, ω) = µη(x) +
nKL∑
i=1

√
λibi(x)Yi(ω)

where {λi, bi(x)}nKLi=1 are eigen-pairs determined from the
covariance of the random field and Yi(ω) are centered, un-
correlated random variables 1 which derive the probability
distribution of the random field. Since the values of Yis
are independent if and only if they have spherical Gaussian
(normal) distribution, in practice KL method is used for
fields with point-wise Gaussian distribution. This, enables
independent generation of random variables Yi. Thus, we
need to transfer a general random field to one with point-
wise Gaussian distribution before using the KL method.
This point is further elaborated when discussing (2) below.
Thus, we assume that the KL expansion is carried out for
a Gaussian random field η(x, ω) ∼ N(µη, ση) (where ση is
random field standard deviation),

η(x, ω) = µη(x) +
nKL∑
i=1

√
λibi(x)yi. (1)

The aforementioned eigen-pairs are obtained by solving the
generalized eigenvalue problem (EVP),∫

D̄

COVη(x1,x2)b(x2)dx2 = λb(x1).

It is beneficial to note that due to the positive and sym-
metric nature of the covariance the eigenfunctions bi(x) are

real and orthogonal 2. It is also important to note that all
the eigenvalues λi are non-negative real values. The gen-
eralized eigenvalue problem is solved using a conventional
Galerkin finite element method (CFEM) which allows the
eigenfunction to be discretized over the spatial domain.
The integral form of the EVP reduces to a generalized al-
gebraic eigenvalue problem [23],

CD = ΛBD.

The N -dimension symmetric positive definite matrices C,
B, and The N -dimension matrices Λ and D are defined
as,

Cij = COV (xi,xj),

Bij =
∫
D̄

hi(x)hj(x)dx,

Λij = δijλi,

Dij = d
(j)
i ,

where xi and xj are i-th and j-th finite element nodal
degrees of freedom respectively for which covariance ma-
trix term Cij is evaluated. The above algebraic equation is
solved for Λ and D (where the columns of D are the eigen-
vectors at each node of a prescribed FEM mesh) with hi(x)
being the complete set of finite element shape functions.

In practice, the random field being approximated may
in fact not be Gaussian; however, we can map a non-
Gaussian ξ(x, ω) to a Gaussian random field η(x, ω) by
using the CDF-inverse relation,

η(x, ω) = F−1
η (Fξ(ξ(x, ω))), (2)

where Fξ and Fη are the Cumulative Density Functions
(CDF) of the non-Gaussian and Gaussian random fields,
respectively. Subsequently, the KL method is used to
generate random field realizations for the Gaussian field
η(x, ω) given that in (1) random variables yi are indepen-
dent, making their random generation practical. Finally,
we can transfer the random field generated for the Gaus-
sian field η(x, ω) back to ξ(x, ω) using the inverse of (2),
i.e., ξ(x, ω) = F−1

ξ (Fη(η(x, ω))).

2.3 Statistics of Random Microstructure:
Spatial Sampling

Since the above KL expansion derivation requires the
knowledge of covariance function COVη(x1,x2) and mean
value of the random field η(x, ω), we employ a spatial sam-
pling method to extrapolate values for both field quanti-
ties utilizing stochastic volume elements (SVEs). Repre-
sentative Volume Elements (RVEs) are frequently used to
homogenized mechanical properties of materials; however,
since for quasi-brittle materials spatial inhomogeneity, i.e.,
microstructural variations, plays an important role in their
fracture response, we employ SVEs to homogenize rock
properties.

To statistically characterize a heterogeneous mate-
rial we consider a finite set D = {D̄n;n ∈ [1, 2, ..., N ]}

1E(Yi(ω)) = 0,and E(Yi(ω)Yj(ω)) = 0
2∫

D̄
bi(x)bj(x)dx = δij
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of N realizations D̄n. Each realization has a distribu-
tion of microscale fractures based on a prescribed prob-
ability structure and crack density. All realization do-
mains are bounded by a boundary/surface ΓD (i.e., ΓD =
ΓD̄1

, ..., ΓD̄N ) and use the same (un)structured sampling
grid of K points xk = (xk1 , ..., xkM ); k ∈ [1,K]. The sam-
pling points define the center points of SVEs considered.
This concept is shown in figure 2 for a 2 dimensional do-
main.

Figure 2: Spatial positions of sampled points inside
each N realizations.

By forming SVEs centered at the grid points, a statis-
tically averaged value of the material property considered
is computed for each of these points based on its corre-
sponding values across all N realizations. To have a better
characterization of covariance function, we use a nonuni-
form sampling scheme where more SVEs are sampled close
to the SVE in the center of the domain; that is, the incre-
mental distance between two successive points is not uni-
form wherein it increases as the points are farther away
from the domain center and closer to the boundary ΓD̄;
this is seen in figure 3. This higher resolution about the
domain center enables computing the covariance function
more accurately, given that the values of the function tend
to zero quickly as the distance of the two points increases.

Figure 3: A nonuniform grid is used for better char-
acterization of covariance function near zero.

By having the considered material property computed
at all SVEs, i.e., all sampled points across all SVEs, we
can compute various statistical quantities for the given
homogenized property, including its point-wise probabil-
ity density function (PDF) and two-point covariance func-
tion. Let Θ(nxk) be a property value extrapolated by an
SVE within realization n at grid point k. The covariance

function between points xp and xq is computed as,

COV (Θ(xp), Θ(xq))
= E(Θ(xp)Θ(xq))− E(Θ(xp))E(Θ(xq))

=
∑N
n=1

(Θ(xpn)−E(Θ(xp)))(Θ(xqn)−E(Θ(xq)))
N , (3)

where p, q ∈ [1, ...,K]. Considering that the values of the
cumulative distribution function (CDF) F (Θ) and proba-
bility density function (PDF) P (Θ) are mutually depen-
dent through the following relationship, it is sufficient to
define only one of the two,

F (z) =
∫ z

−∞
P (χ)dχ (4a)

P (z) = ∂F (z)
∂z

(4b)

Having a data set of nt = KN discrete values Θ(xpn)
(1 ≤ p ≤ K, 1 ≤ n ≤ N) with minimum Θsmin and max-
imum Θsmax values, the empirical cumulative distribution
function is given as,

∀θ Θsmin ≤ θ ≤ Θsmax : F̃ (θ) = 1
nt

nt∑
i=1

1χi≤θ,

where 1A is the indicator of event A.

2.4 Computation of fracture strength for
an SVE

Figure 4: Cracks considered for computation of effec-
tive strength for an SVE: (blue line: considered crack
segments internal to SVE, red line: neglected crack
segments external to SVE )

In this section we describe how a fracture strength
value is computed and assigned to an SVE. Figure 4 shows
a sample SVE in domain D̄. Beside the cracks that are in-
side the SVE, those that intersect its boundaries are also
considered in deriving an effective strength for the SVE.
The fracture strength is computed by finding the minimum
unidirectional tensile stress, along all directions in [0, 2π],
such that at least for one of the crack tips in the SVE,
K = Kc where K is the stress intensity factor (SIF) at the
crack tip and Kc is the fracture toughness of rock.

Underlying to this definition of fracture strength is that
the propagation of microcracks is governed by linear elas-
tic fracture mechanics (LEFM) theory and that upon the
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propagation of the first microcrack the SVE basically can
be considered as completely failed. The second assump-
tion is justifiable as many results in the literature, see for
example [24], demonstrate that for quasi-brittle RVEs and
SVEs with microcracks and microdefects the load at which
material response starts to deviate from linear elasticity is
very close to the volume element’s failure strength. This
is due to the lack of considerable plastic deformation or
other bulk energy dissipating mechanisms. In the context
of our model for rock, wherein microcracks are randomly
distributed, the point of major departure from linear elas-
ticity is when the SIF for the most critical crack in the
SVE reaches the fracture toughness. Finally, instead of
doing a full FE analysis, we assume that the SIF of each
crack can be approximated by that of a crack in an infinite
domain. Clearly, this crude approximation ignores crack
interactions, but is expected to provide relatively accurate
representation for the macroscopic fracture strength field.

Let Lc and lc be the original length and length of the
qth microcrack within the SVE, respectively. The critical
stress for this specific qth microcrack within the SVE is
given by the equation

s̄ q =
(
Lqc
lqc

)α
Kc√
πLqc/2

,

where as mentioned Kc is the fracture toughness and
α is a constant value coefficient. If α = 0 we have
s̄ q = Kc/

√
πLqc/2 which is the critical tensile stress for

a crack of length Lq in an infinite domain with fracture
toughness Kc. On the other hand, if α = 1

2 we obtain
s̄ q = Kc/

√
πlqc/2, i.e., critical tensile stress for a crack

of length lqc . Obviously, for cracks that are inside the do-
main, the value of α is irrelevant. However for those that
intersect it, from the discussion above a value α = 1

2 only
considers the part of the crack that is inside the SVE and
α = 0 models it as a full crack in the SVE. Given that
the critical stress for such crack is clearly larger than the
latter and should be considered lower than the former in
deriving an effective critical stress for this crack in relation
to the given SVE (considering that only a small fraction
of the crack can be inside the SVE), we propose to use
the intermediate value of α = 1

4 . As discussed in section 4
with more physics-based approached we can obtain more
realistic values for s̄ q.

Once we compute critical stresses s̄ q for all cracks
q ∈ Q inside or intersecting a given SVE, the strength
of the SVE s̄ is defined as,

s̄ = minq∈Q{s̄ q}.

With this definition, a fracture strength is assigned to all
SVEs, i.e., for all spatial positions and for all random re-
alizations. These values are in turn used to compute PDF
and covariance function from (4b) and (3), respectively.
Finally, the KL method from section 2.2 is used to gener-
ate random fields whose statistics are consistent with the
underlying microstructure (in this case rock with embed-
ded microcracks).

2.5 Spacetime discontinuous Galerkin
method

We use an h-adaptive spacetime discontinuous Galerkin
(SDG) finite element method [25, 26] for our analyses of
dynamic stimulation of a wellbore. This method uses ba-
sis functions which are discontinuous across all element
boundaries. The SDG method directly discretizes space-
time using nonuniform grids that satisfy a special causal-
ity constraint [27]. This is contrary to conventional time
marching schemes used for advancing the solution in time.
These features yield unique properties such as local and
asynchronous solution scheme, arbitrarily high and local
temporal order of accuracy, and linear solution scaling
with number of elements. Utilizing advanced adaptive
operations in spacetime, and the local and asynchronous
solution features of the SDG method, we can very accu-
rately and efficiently capture complex fracture patterns by
a crack tracking adaptive scheme [28, 29]. The solution is
mesh independent and accommodates crack propagation
in any desired direction, a feature similar to the popular
XFEM and GFEM methods, but removes the need to en-
rich element basis functions. All these features make the
SDG method ideal for dynamic rock fracture simulations
reported in section 3.4.

(a) Example of realization D̄
with random microstructure ar-
chitecture.

(b) SVE sample from figure 5a
centered at x = (0, 0).

(c) SVE sample from figure 5a
centered at x = (120, 0).

Figure 5: A 40× 40 domain and two sampled SVEs.

3 NUMERICAL RESULTS

The spatial domain D̄ used for generating the follow-
ing statistical data is a simple rectangular domain cen-
tered at the Cartesian position xcenter = (0, 0) and span-
ning 40 length units in both ~e1 and ~e2 directions (i.e.,
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x ∈ D̄ = [−20, 20] × [−20, 20]). An example of a realiza-
tion containing the above spatial specifications is seen in
figure 5a.

To generate rock domain realizations with microcracks,
we need to assume a certain statistics for the microcracks;
for the numerical results reported herein, we assume that
the microcrack length follow a Weibull distribution [8, 9]
and its angle is uniformly distributed between [0 2π] (that
is there is no angular bias, as for example for rocks with
bedding planes). Furthermore, the average and standard
deviation of microcrack length are 20cm and 3.5cm, re-
spectively. Finally, we use a take-and-place algorithm
to distribute generated cracks in a domain of edge size
LD̄ = 40m. A sample realization is shown in figure 5a.
It can clearly be seen that the average length lengths are
smaller than the SVE size and the SVE size is much smaller
than the domain size, conditions that were discussed in sec-
tion 2.3. As discussed in section 2.3, the center points of
sampled SVEs form a nonuniform grid. Two sample SVEs
generated from the domain in figure 5a are shown in figures
5b and 5c.

3.1 The effect of the SVE size on random
field statistics

The size of the SVE directly influences the statistics of
the random field characterized. To study the relation be-
tween the SVE size and the fracture strength random field
statistics, square SVEs with edge sizes of 1, 2, and 4 were
considered. The PDFs of the fracture strength field in fig-
ure 6 are accordingly labeled by SVE1×1, SVE2×2, and
SVE4× 4.

Figure 6: The effect of the SVE size on random field
statistics.

As the SVE size becomes larger and tends to the RVE
size limit, the peek of the PDF curve shifts to the left, that
is a weaker material is represented. This is the well-known
size effect for (quasi-)brittle materials; as the size of the do-
main increases there is a larger likelihood that a more crit-
ical crack or defect exists in it. That is why larger samples
tend to have lower fracture strength. In fact, domain size
calibrated Weibull model and many other stochastic mod-
els in the literature attempt to represent this phenomenon.

Another observation is that as the window size de-
creases, the sampled fracture strength values are more
likely to have wider variations. The reason is that at small
sizes, the SVE may land in a region with long crack(s) or a
short one, thus yielding a low or a high fracture strength,
respectively. This is demonstrated by higher standard de-
viations for smaller SVE window sizes in figure 6. On the
contrary, as the SVE window size tends to the RVE limit
size, the PDF tends to a Dirac delta function centered at
the constant statistically averaged value. In this case, no
matter where the volume element is sampled and which
realization is considered, the crack ensemble represents
macroscopically homogeneous value.3 Clearly, the sizes
considered herein are intentionally small (i.e., the volume
elements are SVEs) to capture rock strength variability.
The following numerical results assume spatial sampling
with an SVE length of one (i.e., SVE1 × 1) as this size
offered greater variability in fracture strength values but
is large enough to not violate the requirements of the SVE
containing a sufficient number of heterogeneities.

3.2 KL random fields

The KL random field meshes were generated based on two
assumptions,

1. The material modeled was isotropic with a rota-
tionally invariant scalar fracture strength, and the
covariance function depending only on distance be-
tween two arbitrary points.

2. The sampled fracture strength values have log-
normal probability distribution and covariance is
calculated for strength values transformed to a stan-
dard normal distribution.

Assumption two means that instead of using CDF inverse
approach, we used a log normal best fit for the PDFs in fig-
ure 6. Given the good level of fit we observed, this assump-
tion is well-justified. Moreover, the covariance function for
fracture strength, cast in the standard normal form (cf.
section 2.2), is interpolated by the exponentially decaying
function,

COV (s̄(x1), s̄(x2)) = e
−
(
|x1−x2|
dc

)2

,

where dc is a characteristic correlation length scale im-
plied by the form of the function.4 Again, there was no
hindrance in using the actual point-wise covariance func-
tion obtained by (3). However, the very good fit between
the function form above, with dc ≈ 0.386, and the actual
discrete covariance function was the rationale in using the
analytical form for the function, which is shown in figure
7.

3For the RVE limit and the independence of fracture strength from the volume element center point, we are assuming a limiting
strength exists as the volume element size tends to infinity and that rock is macroscopically homogeneous for fracture strength.
Obviously, these assumptions can be relaxed and are not related to the SVE homogenization approach presented in this manuscript.

4Covariance function takes the value of one at zero relative distance, i.e., COV (s̄(x1), s̄(x1)) = 0, because fracture strength field
is first mapped to a standard normal distribution which has a point-wise covariance value of unity.
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Figure 7: One-dimensional covariance function based
on SVE1× 1 results.

Solving the algebraic generalized eigenvalue problem
with a Galerkin finite element method, the values for eigen-
values λn and eigenfunctions bn(x) were determined. The
continuous and smoothly decreasing eigenvalues can be
seen in figure 8.

Figure 8: Eigenvalues λn for COV (s̄(x1), s̄(x2)) ≈
e−((|x1−x2|)/0.386)2 , corresponding to SVE1×1 results.

For brevity only the corresponding eigenfunctions for
n = 1, 2, 4, and 21 are shown in figure 9.

(a) Eigenfunction b1(x) (b) Eigenfunction b2(x)

(c) Eigenfunction b4(x) (d) Eigenfunction b21(x)

Figure 9: Eigenfunctions for n = 1, 2, 4, and 21 cor-
responding to eigenvalues in figure 8.

3.3 Discrete grids for fracture strength
and FEM solution

A key feature of the random field discretization, using
the Karhunen-Loève (KL) expansion method, is that the
discrete mesh for fracture strength can be realized inde-
pendent of the solid mechanics finite element mesh. Ac-
cordingly, finite element method discretization and mesh
adaptive operations, e.g., refinement and coarsening in
spacetime [26, 29], can be performed without having to
re-evaluate random fields which otherwise could lead to
inaccurate and inconsistent random field values. For frac-
ture simulations in section 3.4 a 16m × 16m domain is
considered. Accordingly, a structured 2D mesh of dimen-
sions [−8, 8]×[−8, 8] is used for KL expansion method. For
this grid, 2D quadrilateral elements (100 × 100 elements)
of equal element size are used for solving the eigenvalue
problem and generating random field realizations. The KL
discrete mesh is shown in figure 10.

Figure 10: Structured spatial mesh for discretization
of KL eigenvalue problem and random field realiza-
tions.

As mentioned in section 2.3 it is possible to transform a
Gaussian random field η(x) to a non-Gaussian ξ(x) know-
ing the cumulative distribution function of both reference
and target field distribution. With the assumption that
the original sampled fracture strength has a log normal
distribution this transformation simplifies to the form,

ξ(x) = eµη+(η(x)ση),

where µη and ση are the mean and standard deviation of
the Gaussian random field which in this case can be deter-
mined from the known mean µξ and standard deviation σξ
of the log-normal field by the following equation,

ση =

√√√√ln

(
1 + σξ

µ2
ξ

)
.

µη = ln

 µξ√
1 + σξ

µ2
ξ

 .

The effective non-Gaussian random field ξeff (x) = s̄(x)
that is used in rock fracture simulations is s̄(x) =
s̄min + ξ(x) where s̄min is the minimum value obtained
during the SVE sampling algorithm. Figure 11a is a vi-
sualization of the random field realization number one for
correlation length dc ≈ 0.386m. This random field for
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fracture strength is used for the reference dynamic rock
fracture simulation in section 3.4.

(a) dc ≈ 0.386m (b) dc = 0.5m

(c) dc = 1.0m (d) dc = 2.0m

Figure 11: The first realization of KL-generated grids
for fracture strength of different correlation lengths,
dc ≈ 0.386m and dc = 0.5m, 1.0m, 2.0m.

Before presenting dynamic fracture results, the effect
of covariance function correlation length dc on the KL ran-
dom field solution is discussed. Figure 11 depicts random
field solutions for correlation length scales dc ≈ 0.386m,
and dc = 0.5m, 1.0m, 2.0m. As the correlation lengths tend
to zero there is a faster decline in the correlation of val-
ues between two points as the points become farther apart
relative to the given correlation length scale dc. The cor-
relation decreases result in high variability of random field
values within an arbitrarily small area. Smaller correlation
lengths could potentially be obtained from sampling of a
rock formation with higher variability in the location and
strength of defects and using smaller SVE window sizes.

3.4 Dynamic stimulation of a wellbore
with random fracture strength

Herein, we demonstrate the use of generated random frac-
ture fields for the analyses of dynamic stimulation of a
wellbore in a tight reservoir. We choose a hybrid pro-
pellant method where loading is applied at highly dy-
namic rates [30, 31], but similar to hydraulic fracturing
the pressure is applied through perforations on the sides
of the wellbore. Figure 12 shows the set-up of the prob-
lem where a circular wellbore, subjected to confinement
pressure σh = σH = 2.425 MPa, is located in the cen-
ter of a 16m × 16m rectangular domain. The wellbore is
perforated at four distinct angular locations, i.e., 0 rad,
π/2 rad, π rad, and 3π/2 rad, which upon loading pro-
motes propagation in those directions. The dynamic pres-
sure load, applied on the perforation surfaces, ramps up

from ambient pressure to a maximum value of 23.0MPa in
10 ms. The bulk material properties are: Young’s Modulus
E = 20 GPa, mass density ρ = 2500 kg/m3, and Poisson’s
ratio ν = 0.20.

The values of fracture strength s̄(x) are extracted
from the independent KL random field solution discretiza-
tion. The fracture strength equation parameters used
in the SVE sampling algorithm are fracture toughness
Kc = 1.13MPa

√
m and coefficient α = 1

4 . For 1 × 1 SVE
sampling size, this resulted in mean value, standard de-
viation, and minimum value of fracture strength equal to
E(s̄) = 2.2 MPa and σs̄ = 455 kPa, and s̄min = 1.34 MPa,
respectively.

Figure 12: Problem sketch for dynamic stimulation
of a wellbore.

Figure 13 shows a sequence of visualization of the prob-
lem with SVE1× 1 fracture strength random field values.
The first realization shown in fig 11a is used for this sim-
ulation. Figures 13a and 13b show stages right before and
after the main cracks bifurcate, respectively. In figure 13c,
cracks start to bifurcate and induce microcracking more
frequently because the cracks are accelerating and the ap-
plied pressure load on crack surfaces is still ramping up.
Finally, in figure 13d the existence of regions of high ki-
netic and strain energy densities, mapped to height and
color fields respectively, corresponds to a highly transient
crack propagation regime. Crack path oscillation, microc-
racking, and crack bifurcation are all mechanisms in which
quasi-brittle materials such as rocks dissipate high input
energy power.

By using the KL random field solutions seen in fig-
ures 11a, and a domain of homogeneous fracture strength
we wanted to investigate the effect of incorporating vari-
ability in fracture strength field on fracture response. In
figures 14 and 15 finite element space front and deformed
shaped of fracture network are compared for solutions
obtained with KL random field solution with correlation
length dc ≈ 0.386m, and spatially homogeneous fracture
strength s̄ = 2.2 MPa (which matched the mean value of
the mesh generated by SVE1× 1) at time t = 4.2ms.

Figure 14 is better suited to observe high levels of mesh
refinement around moving crack tips, while the fracture
patterns can more clearly be seen in figure 15. Herein,
we use the interfacial damage model from [28] to represent
processes of surface debonding on a fracture interface. In
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(a) Time t = 3.0ms (b) Time t = 3.2ms

(c) Time t = 4.0ms (d) Time t = 4.6ms

Figure 13: A series of solution visualization of dynamic wellbore stimulation. Fracture strength values are
based on the KL mesh in figure 11a for SVE1 × 1. Strain energy and height fields are mapped to color and
height fields respectively.

(a) Variable fracture strength for dc ≈ 0.386m. (b) Constant fracture strength s̄ = 2.2 MPa.

Figure 14: Comparison of finite element space mesh for random and nonrandom fracture strength, at time
t = 4.2ms.

(a) Variable fracture strength for dc ≈ 0.386m. (b) Constant fracture strength s̄ = 2.2 MPa.

Figure 15: Comparison of deformed shape for random and nonrandom fracture strength, at time t = 4.2ms.
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both figures, damage value is mapped to color with the
range blue to red denoting zero to full interfacial damage.
As we observe, in all cases except in fracture process zones
right in the wake of crack tips, the rest of crack segments
experience full damage. That is, as expected regions that
are supposed to be physically debonded have a damage
value of one.

Fracture patterns for random fracture strength are
shown in figures 14(a) and 15(a). With the results for
the homogeneous fracture strength, cf. figures 14(b) and
15(b), we observe some distinctions between these results
and those obtained with KL random field solutions. Specif-
ically, incorporating fracture strength randomness, in lieu
of a homogeneous value, results in fracture patterns with
slightly fewer microcracks and crack branching. Also, the
fracture patterns obtained with variable fracture strength
are less symmetric with respect to horizontal and vertical
lines passing through the center of the wellbore. We at-
tribute this to local variations in fracture strength that can
further break the symmetries implied by the geometry and
loading for this problem.

4 CONCLUSIONS

By using stochastic volume elements, and by assuming
that at the microscale defects in the form of microcracks
populate rock, we used a stochastic approach to gener-
ate random fields for fracture strength of rocks. A set
of rock domain realizations were spatially sampled using
nonuniform grids wherein an SVE was constructed at each
grid point. By using an approximate equation, which ig-
nored the interaction of individual cracks, we assigned a
fracture strength value to each SVE. Thereafter, distribu-
tion statistics (i.e., probability density, cumulative distri-
bution, covariance) based on a non-Gaussian probability
structure were determined. By solving an algebraic gener-
alized eigenvalue problem with finite element method we
determined eigenvalue and eigenfunction pairs used in the
Karhunen-Loève expansion of a Gaussian random field.
The KL random field was subsequently transformed to re-
flect the probability structure of the originally sampled
non-Gaussian random field through a simple cumulative
density function relationship. This obtained non-Gaussian
random field randomizes fracture strength values for frac-
ture analysis of rocks.

In this work we assumed a certain statistics for in-situ
microcracks in rock. In future works we aim to use ac-
tual microcrack statistics such as those reported in [32]
and employ more robust approaches for generation of mi-
crocracked domains as in [33, 34]. We also ignored the
interaction of microcracks in the computation of stress in-
tensity factors. For each SVE by solving a few simple
boundary loading conditions using finite element methods,
we can calculate stress intensity factors for each crack for
any macroscopic direction of applied tension. This enables
the derivation of more accurate, and angular–dependent
fracture strengths at the SVE level. In turn, this would
better demonstrate the differences in fracture response ob-
tained by a stochastic model for fracture strength, con-

sistent with underlying microcrack distribution, and the
models that assume a spatially uniform fracture strength.
Although treating fracture strength as a random field ap-
pears to be more important than elastic moduli, we plan
to determine their individual statistics as well as mutual
cross-correlations. Since these quantities are not expected
to be mutually independent, we also intend to generalize
the presented work and simultaneously generate random
fields for more than one scalar field.
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